Enhancing Variant Prioritization in VarFish through On-Premise Computational Facial Analysis

Genomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2024-03, Vol.15 (3), p.370
Hauptverfasser: Bhasin, Meghna Ahuja, Knaus, Alexej, Incardona, Pietro, Schmid, Alexander, Holtgrewe, Manuel, Elbracht, Miriam, Krawitz, Peter M, Hsieh, Tzung-Chien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis (CADA) within VarFish, an open-source variant analysis framework. Challenges related to non-open-source components were addressed by providing an open-source version of GestaltMatcher, facilitating on-premise facial analysis to address data privacy concerns. Performance evaluation on 163 patients recruited from a German multi-center study of rare diseases showed PEDIA's superior accuracy in variant prioritization compared to individual scores. This study highlights the importance of further benchmarking and future integration of advanced facial analysis approaches aligned with ACMG guidelines to enhance variant classification.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes15030370