Genetic Diversity and Fungicide Sensitivity of Cytospora plurivora on Peach

D.P. Lawr., L.A. Holland & Trouillas has been associated with recent premature peach tree decline in South Carolina, but very little is known about the pathogen or chemical control options. Ninety-three isolates were collected in 2016 and 2017 from 1-year-old peach wood and symptomatic scaffold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant disease 2023-07, Vol.107 (7), p.2112-2118
Hauptverfasser: Baker, Stephen T, Froelich, Martha H, Boatwright, Harriet, Wang, Hehe, Schnabel, Guido, Kerrigan, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:D.P. Lawr., L.A. Holland & Trouillas has been associated with recent premature peach tree decline in South Carolina, but very little is known about the pathogen or chemical control options. Ninety-three isolates were collected in 2016 and 2017 from 1-year-old peach wood and symptomatic scaffold limbs, respectively, from orchards in six towns in South Carolina. Six unique genotypes were identified based on substantial ITS1-5.8S-ITS2 sequence variability and classified G1 to G6. Three of the genotypes (G2, G3, and G6) were isolated in high frequency in multiple locations of both years. In addition to the genotypic variation, multiple phenotypes were observed between and within genotype groups. Species identity was determined using additional gene loci: ACT, TUB, and EF, and isolates were found to belong to for all genotype groups. All tested genotypes were sensitive to thiophanate-methyl (FRAC 1) but exhibited slightly lower sensitivity to propiconazole and difenoconazole (both FRAC 3). Boscalid, fluopyram (both FRAC 7s), azoxystrobin, and pyraclostrobin (both FRAC 11s) were ineffective in vitro at inhibiting mycelial growth of genotypes. Field inoculation of peach and nectarine trees revealed that all genotypes developed twig cankers with differences in virulence. G1 was most virulent, and G6 was least virulent. This study provides a link between the genetic variability and virulence and provides fungicide sensitivity information that could be used to improve disease management practices.
ISSN:0191-2917
1943-7692
DOI:10.1094/PDIS-04-22-0790-RE