Recent Advances in Automated Structure-Based De Novo Drug Design

As the number of determined and predicted protein structures and the size of druglike ‘make-on-demand’ libraries soar, the time-consuming nature of structure-based computer-aided drug design calls for innovative computational algorithms. De novo drug design introduces in silico heuristics to acceler...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-03, Vol.64 (6), p.1794-1805
Hauptverfasser: Tang, Yidan, Moretti, Rocco, Meiler, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the number of determined and predicted protein structures and the size of druglike ‘make-on-demand’ libraries soar, the time-consuming nature of structure-based computer-aided drug design calls for innovative computational algorithms. De novo drug design introduces in silico heuristics to accelerate searching in the vast chemical space. This review focuses on recent advances in structure-based de novo drug design, ranging from conventional fragment-based methods, evolutionary algorithms, and Metropolis Monte Carlo methods to deep generative models. Due to the historical limitation of de novo drug design generating readily available drug-like molecules, we highlight the synthetic accessibility efforts in each category and the benchmarking strategies taken to validate the proposed framework.
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.4c00247