Turning Antibodies into Ratiometric Bioluminescent Sensors for Competition-Based Homogeneous Immunoassays

Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-03, Vol.9 (3), p.1401-1409
Hauptverfasser: van Aalen, Eva A., Lurvink, Joep J. J., Vermeulen, Leandra, van Gerven, Benice, Ni, Yan, Arts, Remco, Merkx, Maarten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we present LUCOS (Luminescent Competition Sensor), a modular and broadly applicable bioluminescent diagnostic platform enabling the detection of both small molecules and protein biomarkers. The construction of LUCOS sensors entails the covalent and site-specific coupling of a bioluminescent sensor component to an analyte-specific antibody via protein G-mediated photoconjugation. Target detection is accomplished through intramolecular competition with a tethered analyte competitor for antibody binding. We established two variants of LUCOS: an inherent ratiometric LUCOSR variant and an intensiometric LUCOSI version, which can be used for ratiometric detection upon the addition of a split calibrator luciferase. To demonstrate the versatility of the LUCOS platform, sensors were developed for the detection of the small molecule cortisol and the protein biomarker NT-proBNP. Sensors for both targets displayed analyte-dependent changes in the emission ratio and enabled detection in the micromolar concentration range (K D,app = 16–92 μM). Furthermore, we showed that the response range of the LUCOS sensor can be adjusted by attenuating the affinity of the tethered NT-proBNP competitor, which enabled detection in the nanomolar concentration range (K D,app = 317 ± 26 nM). Overall, the LUCOS platform offers a highly versatile and easy method to convert commercially available monoclonal antibodies into bioluminescent biosensors that provide a homogeneous alternative for the competitive immunoassay.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.3c02478