High-intensity exercise impairs intestinal barrier function by generating oxidative stress
The intestine functions as a barrier preventing the entry of extrinsic factors into the body. This barrier function is disrupted by oxidative damage along with an impaired mucosal layer. Excessive exercise can generate oxidative stress in the intestinal tissue; however, the effect of exercise-induce...
Gespeichert in:
Veröffentlicht in: | Journal of Clinical Biochemistry and Nutrition 2024, Vol.74(2), pp.136-140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intestine functions as a barrier preventing the entry of extrinsic factors into the body. This barrier function is disrupted by oxidative damage along with an impaired mucosal layer. Excessive exercise can generate oxidative stress in the intestinal tissue; however, the effect of exercise-induced oxidative stress on intestinal permeability is unclear. In this study, we examined the involvement of oxidative stress in barrier function of the ileum of mice following high-intensity exercise. Male ICR mice (12-week-old) were divided into sedentary and exercise groups. Mice in the exercise group underwent a single bout of treadmill running, and the ileum was collected for histological and biochemical analyses. Plasma fluorescence intensity level after oral administration of fluorescein isothiocyanate-dextran gradually increased until 30 min after exercise in response to intensity of exercise. Relatively high levels of oxidative proteins and low level of claudin-1, a tight-junction protein, were observed in the exercise group. Treatment with a xanthine oxidase inhibitor suppressed exercise-induced increases in intestinal permeability. Moreover, excessive exercise training for two weeks led to relatively high intestinal permeability at rest. These results suggest that high-intensity exercise increases intestinal permeability and tight junction damage, which may be mediated by oxidative stress. |
---|---|
ISSN: | 0912-0009 1880-5086 |
DOI: | 10.3164/jcbn.23-96 |