Slowly progressive cell death induced by GPx4-deficiency occurs via MEK1/ERK2 activation as a downstream signal after iron-independent lipid peroxidation
Glutathione peroxidase 4 (GPx4) is an antioxidant enzyme that reduces phospholipid hydroperoxide. Studies have reported that the loss of GPx4 activity through anticancer drugs leads to ferroptosis, an iron-dependent lipid peroxidation-induced cell death. In this study, we established Tamoxifen-induc...
Gespeichert in:
Veröffentlicht in: | Journal of Clinical Biochemistry and Nutrition 2024, Vol.74(2), pp.97-107 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glutathione peroxidase 4 (GPx4) is an antioxidant enzyme that reduces phospholipid hydroperoxide. Studies have reported that the loss of GPx4 activity through anticancer drugs leads to ferroptosis, an iron-dependent lipid peroxidation-induced cell death. In this study, we established Tamoxifen-inducible GPx4-deficient Mouse embryonic fibroblast (MEF) cells (ETK1 cells) and found that Tamoxifen-inducible gene disruption of GPx4 induces slow cell death at ~72 h. In contrast, RSL3- or erastin-induced ferroptosis occurred quickly within 24 h. Therefore, we investigated the differences in these mechanisms between GPx4 gene disruption-induced cell death and RSL3- or erastin-induced ferroptosis. We found that GPx4-deficiency induced lipid peroxidation at 24 h in Tamoxifen-treated ETK1 cells, which was not suppressed by iron chelators, although lipid peroxidation in RSL3- or erastin-treated cells induced ferroptosis that was inhibited by iron chelators. We revealed that GPx4-deficient cell death was MEK1-dependent but RSL3- or erastin-induced ferroptosis was not, although MEK1/2 inhibitors suppressed both GPx4-deficient cell death and RSL3- or erastin-induced ferroptosis. In GPx4-deficient cell death, the phosphorylation of MEK1/2 and ERK2 was observed 39 h after lipid peroxidation, but ERK1 was not phosphorylated. Selective inhibitors of ERK2 inhibited GPx4-deficient cell death but not in RSL3- or erastin-induced cell death. These findings suggest that iron-independent lipid peroxidation due to GPx4 disruption induced cell death via the activation of MEK1/ERK2 as a downstream signal of lipid peroxidation in Tamoxifen-treated ETK1 cells. This indicates that GPx4 gene disruption induces slow cell death and involves a different pathway from RSL3- and erastin-induced ferroptosis in ETK1 cells. |
---|---|
ISSN: | 0912-0009 1880-5086 |
DOI: | 10.3164/jcbn.23-101 |