Stabilisierung von Elektronentransferwegen erlaubt Stabilität von Biohybrid‐Photoelektroden über Jahre

Die Nutzung natürlicher photosynthetischer Enzyme in biohybriden Anwendungen stellt eine attraktive und potenziell nachhaltige Möglichkeit zur Umwandlung von solarer Energie in Elektrizität und Brennstoffe dar. Jedoch begrenzt die Stabilität von photosynthetisch aktiven Proteinen nach der Implementi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-06, Vol.134 (24), p.e202201148-n/a
Hauptverfasser: Friebe, Vincent M., Barszcz, Agata J., Jones, Michael R., Frese, Raoul N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Die Nutzung natürlicher photosynthetischer Enzyme in biohybriden Anwendungen stellt eine attraktive und potenziell nachhaltige Möglichkeit zur Umwandlung von solarer Energie in Elektrizität und Brennstoffe dar. Jedoch begrenzt die Stabilität von photosynthetisch aktiven Proteinen nach der Implementierung in biohybride Anwendungsdesigns die operative Lebensdauer von Biophotoelektroden auf bisher wenige Stunden. In dieser Publikation demonstrieren wir, wie sich die Stabilität einer mesoporösen Elektrode, welche mit dem Photoprotein RC‐LH1 aus Rhodobacter sphaeroides beschichtet ist, erheblich steigern lässt. Durch die Aufrechterhaltung der Elektronenübertragungswege konnte die operative Lebensdauer unter Dauerlicht auf 33 Tage gesteigert werden und die operative Funktionalität nach einer Lagerung über mehr zwei Jahre hinweg demonstriert werden. Kombiniert mit hohen Photoströmen, die Spitzenwerte von 4.6 mA cm−2 erreichten, erzeugte die optimierte Biophotoelektrode eine kumulative Leistung von 86 C cm−2, die höchste bisher berichtete Leistung für diese Art von Elektroden. Unsere Ergebnisse zeigen, dass der Faktor, welcher die Stabilität einschränkt, die Architektur der Struktur ist, die das Photoprotein umgibt, sowie das entsprechende biohybride Sensoren und photovoltaische Geräte mit einer Betriebsdauer von mehreren Jahren möglich sind. Die Anwendung von biohybriden Technologien wird in erster Linie durch die Instabilität der biologischen Komponente eingeschränkt. Hier verlängern wir die Betriebsstabilität von Photoproteinen, die an mesoporöse ITO‐Elektroden adsorbiert sind, auf 33 Tage bei intensiver Belichtung und 28 monate bei Lagerung, was die Umsetzbarkeit von proteinbasierten Geräten über Jahre hinweg demonstriert.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202201148