Recombinant Rod Domain of Vimentin Reduces SARS-CoV-2 Viral Replication by Blocking Spike Protein-ACE2 Interactions

Although the SARS-CoV-2 vaccination is the primary preventive intervention, there are still few antiviral therapies available, with current drugs decreasing viral replication once the virus is intracellular. Adding novel drugs to target additional points in the viral life cycle is paramount in preve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-02, Vol.25 (5), p.2477
Hauptverfasser: Lam, Fong Wilson, Brown, Cameron August, Ronca, Shannon Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the SARS-CoV-2 vaccination is the primary preventive intervention, there are still few antiviral therapies available, with current drugs decreasing viral replication once the virus is intracellular. Adding novel drugs to target additional points in the viral life cycle is paramount in preventing future pandemics. The purpose of this study was to create and test a novel protein to decrease SARS-CoV-2 replication. We created the recombinant rod domain of vimentin (rhRod) in and used biolayer interferometry to measure its affinity to the SARS-CoV-2 S1S2 spike protein and the ability to block the SARS-CoV-2-ACE2 interaction. We performed plaque assays to measure rhRod's effect on SARS-CoV-2 replication in Vero E6 cells. Finally, we measured lung inflammation in SARS-CoV-2-exposed K18-hACE transgenic mice given intranasal and intraperitoneal rhRod. We found that rhRod has a high affinity for the S1S2 protein with a strong ability to block S1S2-ACE2 interactions. The daily addition of rhRod decreased viral replication in Vero E6 cells starting at 48 h at concentrations >1 µM. Finally, SARS-CoV-2-infected mice receiving rhRod had decreased lung inflammation compared to mock-treated animals. Based on our data, rhRod decreases SARS-CoV-2 replication in vitro and lung inflammation in vivo. Future studies will need to evaluate the protective effects of rhRod against additional viral variants and identify the optimal dosing scheme that both prevents viral replication and host lung injury.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25052477