Environmental and seasonal factors affecting the frost-induced stage of cold acclimation in Cornus stolonifera Michx

Stem tissues of red-osier dogwood (Cornus stolonifera Michx.) acclimated from -3 C to -40 or -50 C in 8 to 10 weeks under a short photoperiod (9 hours) and controlled temperature conditions. During the summer months plants did not acclimate as well as at other times. The sequence of day/night temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1978-12, Vol.62 (6), p.894-898
Hauptverfasser: Harrison, L.C, Weiser, C.J, Burke, M.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem tissues of red-osier dogwood (Cornus stolonifera Michx.) acclimated from -3 C to -40 or -50 C in 8 to 10 weeks under a short photoperiod (9 hours) and controlled temperature conditions. During the summer months plants did not acclimate as well as at other times. The sequence of day/night temperature regimes which induced maximum acclimation was 20/15 C for 5 to 6 weeks; 15/5 C for 2 to 3 weeks; 15/5 C plus 1 hour of frost per day for 1 week. The duration of exposure to each temperature regime influenced the rate and intensity of frost-induced acclimation. Less than 5 weeks of warm temperature preconditioning at 20/15 C reduced subsequent frost-induced acclimation. The inductive influence of frost on cold acclimation was additive over 5 days of repeated exposure, but its effects after the first exposure(s) were not immediate--requiring 1 to 4 days of 15/5 C following the frost treatments for the expression of the frost-induced acclimation to be manifest. There was a 75% increase in rRNA following 3 days of frost exposure and plants in an O2-free atmosphere during frost exposure failed to acclimate. The results suggest that seasonal acclimation behavior was due to endogenous rhythms rather than developmental stage, and that the frost-induced phase of acclimation involves aerobic metabolic processes.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.62.6.894