A lipo-polymeric hybrid nanosystem with metal enhanced fluorescence for targeted imaging of metastatic breast cancer
Cancer metastasis plays a major role in failure of therapeutic avenues against cancer. Owing to metastasis, nearly 70-80% of stage IV breast cancer patients lose their lives. Nanodrug delivery systems are playing a critical role in the therapy of metastatic cancer in the recent times. This paper rep...
Gespeichert in:
Veröffentlicht in: | Nanotheranostics (Sydney, NSW) NSW), 2024, Vol.8 (2), p.239-246 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cancer metastasis plays a major role in failure of therapeutic avenues against cancer. Owing to metastasis, nearly 70-80% of stage IV breast cancer patients lose their lives. Nanodrug delivery systems are playing a critical role in the therapy of metastatic cancer in the recent times. This paper reports the enhanced permeation and retention (EPR) based targeting of metastatic breast cancer using a novel nano lipo-polymeric system (PIR-Au NPs). The PIR-Au NPs demonstrated an increase in fluorescence by virtue of surface coating with gold, owing to the metal enhanced fluorescence phenomenon as reported in our earlier reports. Enhanced fluorescence of PIR-Au NPs was observed in murine mammary carcinoma cell line (4T1), as compared to free IR780 or IR780 loaded nanosystems (P-IR NPs), when incubated for same time at same concentrations, indicating its potential application for imaging and an enhanced bioavailability of IR780. Significant cell death was noted with photothermal mediated cytotoxicity
against breast cancer cells (MCF-7 and 4T1). An enhanced fluorescence was observed in the zebra fish embryos incubated with PIR-Au NPs. The enhanced permeation and retention (EPR) effect was seen with PIR-Au NPs
. A strong fluorescent signal was recorded in mice injected with PIR-Au NPs. The tumor tissue collected after 72 h, clearly showed a greater fluorescence as compared to other groups, indicating the plasmon enhanced fluorescence. We also demonstrated the EPR-based targeting of the PIR-Au NPs
by means of photothermal heat
This lipo-polymeric hybrid nanosystem could therefore be successfully applied for image-guided, passive-targeting to achieve maximum therapeutic benefits. |
---|---|
ISSN: | 2206-7418 2206-7418 |
DOI: | 10.7150/ntno.92410 |