USF1 regulated circPRDM4 modulates tumorigenesis and immune escape in chemoresistant cervical cancer

Cervical cancer (CC) represents a major global health concern, characterized by chemoresistance and immune evasion mechanisms. Circular RNAs (circRNAs), which play a crucial role in cancer pathogenesis, particularly in the case of CC, have gained significant attention. The primary objective of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2024-03, Vol.28 (5), p.e17945-n/a
Hauptverfasser: Zhang, Yan, Li, Xing, Zhang, Jun, Mao, Lin, Wen, Zou, Cao, Mingliang, Mu, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cervical cancer (CC) represents a major global health concern, characterized by chemoresistance and immune evasion mechanisms. Circular RNAs (circRNAs), which play a crucial role in cancer pathogenesis, particularly in the case of CC, have gained significant attention. The primary objective of this study was to investigate the functional significance of circRNAs in chemoresistant CC. A significant upregulation of circPRDM4 expression in chemoresistant CC cells. To investigate the functional consequences, we conducted circPRDM4 knockdown experiments, which resulted in the effective blockade of immune escape mechanisms employed by chemoresistant CC cells. Furthermore, circPRDM4 knockdown demonstrated a significant suppression of tumorigenesis in CC cells, highlighting its contribution to the oncogenic potential of CC. Investigating the regulatory mechanisms involved, we found that the transcriptional factor upstream stimulatory factor 1 (USF1) acts as an inducer of circPRDM4 expression. Remarkably, USF1 was found to effectively modulate CC cell immune escape via its interaction with circPRDM4. Moreover, our results revealed that USF1 is intricately involved in CC cell tumorigenesis through the regulation of circPRDM4. Collectively, our study elucidates the significant roles of circPRDM4 and its upstream regulator USF1 in chemoresistant CC cells. These findings underscore the importance of circRNAs in CC pathogenesis and provide valuable insights into the mechanisms underlying immune escape and tumorigenesis.
ISSN:1582-1838
1582-4934
1582-4934
DOI:10.1111/jcmm.17945