Oak extracts modulate circadian rhythms of clock gene expression in vitro and wheel-running activity in mice

Introduction In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates the circadian rhythm and controls locomotor activity rhythms. In addition to SCN cells, the peripheral tissues and embryonic fibroblasts also have clock genes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sleep and biological rhythms 2022-04, Vol.20 (2), p.255-266
Hauptverfasser: Haraguchi, Atsushi, Du, Yao, Shiraishi, Rena, Takahashi, Yuki, Nakamura, Takahiro J., Shibata, Shigenobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates the circadian rhythm and controls locomotor activity rhythms. In addition to SCN cells, the peripheral tissues and embryonic fibroblasts also have clock genes, such as Per1/2 and Bmal1 , which generate the transcriptional–translational feedback loop to produce an approximately 24-h cycle. Aging adversely affects the circadian clock system and locomotor functions. Oak extract has been reported to improve age-related physiological changes. However, no study has examined the effect of oak extract on the circadian clock system. Methods We examined the effects of oak extract and its metabolites (urolithin A [ULT] and ellagic acid [EA]) on clock gene expression rhythms in mouse embryonic fibroblasts (MEFs) and SCN. Furthermore, locomotor activity rhythm was assessed in young and aged mice. Results Chronic treatment with EA and ULT delayed the phase of PER2::LUC rhythms in SCN explants, and ULT prolonged the period of PER2::LUC rhythms in MEFs in a dose-dependent manner and increased the amplitude of PER2::LUC rhythms in MEFs, though only at low concentrations. Acute treatment with ULT affected the phase of PER2::LUC rhythms in MEFs depending on the concentration and timing of the treatment. In addition, oak extract prolonged the activity time of behavioral rhythms in old mice and tended to increase daily wheel-running revolutions in both young and old mice. Conclusions These results suggest that oak extract is a novel modulator of the circadian clock in vitro and in vivo.
ISSN:1446-9235
1479-8425
DOI:10.1007/s41105-021-00365-2