Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced ski...
Gespeichert in:
Veröffentlicht in: | Stem cell reports 2024-02, Vol.19 (2), p.254-269 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
[Display omitted]
•We enriched RPCs using LF-GC•LF-GC-based-sorted RPCs consistently developed retinal tissues for transplantation•LF-GC-based sorting achieved nearly 10 times efficiency in retinal graft preparation•LF-GC-enriched hiPSC-RPC grafts structurally matured in retinal degeneration animals
Mandai and colleagues show that their label-free ghost cytometry-based sorting system optimized by retinal progenitor cell (RPC)-reporter hESC line as a training sample successfully enriched early RPCs dissociated from non-labeled hiPSC-derived retinal organoids. They also show that their system provides the stable and robust production of retinal grafts, which structurally matured in retinal degeneration nude rat eyes. |
---|---|
ISSN: | 2213-6711 2213-6711 |
DOI: | 10.1016/j.stemcr.2023.12.001 |