System-Specific Parameter Optimization for Nonpolarizable and Polarizable Force Fields

The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation–protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-02, Vol.20 (3), p.1448-1464
Hauptverfasser: Hu, Xiaojuan, Amin, Kazi S., Schneider, Markus, Lim, Carmay, Salahub, Dennis, Baldauf, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation–protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms describing charge transfer (CT) and polarization (POL) effects. In this work, we introduce our implementation of the CTPOL model in OpenMM, which extends the classical additive FF formula by adding CT and POL. Furthermore, we present an open-source parametrization tool, called FFAFFURR, that enables the (system-specific) parametrization of OPLS-AA and CTPOL models. The performance of our workflow was evaluated by its ability to reproduce quantum chemistry energies and by molecular dynamics simulations of a zinc-finger protein.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.3c01141