SARS-CoV-2 Ultraviolet Radiation Dose-Response Behavior

Ultraviolet (UV) radiation in the wavelength range 200 nm ≤ λ ≤ 320 nm, which includes both the UV-C and UV-B portions of the spectrum, is known to be effective for inactivation of a wide range of microbial pathogens, including viruses. Previous research has indicated UV-C radiation to be effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of research of the National Institute of Standards and Technology 2021, Vol.126, p.126018-11, Article 126018
Hauptverfasser: Blatchley Iii, Ernest R, Petri, Brian, Sun, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultraviolet (UV) radiation in the wavelength range 200 nm ≤ λ ≤ 320 nm, which includes both the UV-C and UV-B portions of the spectrum, is known to be effective for inactivation of a wide range of microbial pathogens, including viruses. Previous research has indicated UV-C radiation to be effective for inactivation of severe acute respiratory syndrome coronavirus (SARS-CoV), the virus that caused an outbreak of SARS in 2003. Given the structural similarities of SARS-CoV and SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), it is anticipated that UV radiation should be effective for inactivation of SARS-CoV-2 too. Recently published data support this assertion, but only for a narrow set of exposure and matrix conditions. Models based on genomic and other characteristics of viruses have been developed to provide predictions of viral inactivation responses to UV exposure at λ = 254 nm. The predictions of these models are consistent with reported measurements of viral inactivation, including for SARS-CoV-2. As such, current information indicates that UV-C irradiation should be effective for control of SARS-CoV-2, as well as for control of other coronaviruses; however, additional research is needed to quantify the effects of several important process variables, including the wavelength of radiation, the effects of relative humidity on airborne and surface-associated viruses, and the effects of the medium of exposure.
ISSN:1044-677X
2165-7254
2165-7254
DOI:10.6028/jres.126.018