Self-assembled, disordered structural color from fruit wax bloom

Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-02, Vol.10 (6), p.eadk4219-eadk4219
Hauptverfasser: Middleton, Rox, Tunstad, Sverre Aarseth, Knapp, Andre, Winters, Sandra, McCallum, Susan, Whitney, Heather
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blueberries, plums, and juniper cones, and find that a structural color mechanism is responsible for their appearance. The chromatic blue-ultraviolet reflectance arises from the interaction of the randomly arranged nonspherical scatterers with light. We reproduce the structural color in the laboratory by recrystallizing wax bloom, allowing it to self-assemble to produce the blue appearance. We demonstrate that blue fruits and structurally colored fruits are not constrained to those with blue subcuticular structure or pigment. Further, convergent optical properties appear across a wide phylogenetic range despite diverse morphologies. Epicuticular waxes are elements of the future bioengineering toolbox as sustainable and biocompatible, self-assembling, self-cleaning, and self-repairing optical biomaterials.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adk4219