Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein

Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2000-08, Vol.28 (16), p.3151-3159
Hauptverfasser: Sunesen, M, Selzer, R R, Brosh, Jr, R M, Balajee, A S, Stevnsner, T, Bohr, V A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.
ISSN:1362-4962
0305-1048
1362-4962
DOI:10.1093/nar/28.16.3151