Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports. Medicine 2024-01, Vol.5 (1), p.101359, Article 101359
Hauptverfasser: Pino, James C, Posso, Camilo, Joshi, Sunil K, Nestor, Michael, Moon, Jamie, Hansen, Joshua R, Hutchinson-Bunch, Chelsea, Gritsenko, Marina A, Weitz, Karl K, Watanabe-Smith, Kevin, Long, Nicola, McDermott, Jason E, Druker, Brian J, Liu, Tao, Tyner, Jeffrey W, Agarwal, Anupriya, Traer, Elie, Piehowski, Paul D, Tognon, Cristina E, Rodland, Karin D, Gosline, Sara J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.
ISSN:2666-3791
2666-3791
DOI:10.1016/j.xcrm.2023.101359