Conserved cobalamin acquisition protein 1 is essential for vitamin B12 uptake in both Chlamydomonas and Phaeodactylum

Abstract Microalgae play an essential role in global net primary productivity and global biogeochemical cycling. Despite their phototrophic lifestyle, over half of algal species depend for growth on acquiring an external supply of the corrinoid vitamin B12 (cobalamin), a micronutrient produced only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2024-01, Vol.194 (2), p.698-714
Hauptverfasser: Sayer, Andrew P, Llavero-Pasquina, Marcel, Geisler, Katrin, Holzer, Andre, Bunbury, Freddy, Mendoza-Ochoa, Gonzalo I, Lawrence, Andrew D, Warren, Martin J, Mehrshahi, Payam, Smith, Alison G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Microalgae play an essential role in global net primary productivity and global biogeochemical cycling. Despite their phototrophic lifestyle, over half of algal species depend for growth on acquiring an external supply of the corrinoid vitamin B12 (cobalamin), a micronutrient produced only by a subset of prokaryotic organisms. Previous studies have identified protein components involved in vitamin B12 uptake in bacterial species and humans. However, little is known about its uptake in algae. Here, we demonstrate the essential role of a protein, cobalamin acquisition protein 1 (CBA1), in B12 uptake in Phaeodactylum tricornutum using CRISPR-Cas9 to generate targeted knockouts and in Chlamydomonas reinhardtii by insertional mutagenesis. In both cases, CBA1 knockout lines could not take up exogenous vitamin B12. Complementation of the C. reinhardtii mutants with the wild-type CBA1 gene restored B12 uptake, and regulation of CBA1 expression via a riboswitch element enabled control of the phenotype. When visualized by confocal microscopy, a YFP-fusion with C. reinhardtii CBA1 showed association with membranes. Bioinformatics analysis found that CBA1-like sequences are present in all major eukaryotic phyla. In algal taxa, the majority that encoded CBA1 also had genes for B12-dependent enzymes, suggesting CBA1 plays a conserved role. Our results thus provide insight into the molecular basis of algal B12 acquisition, a process that likely underpins many interactions in aquatic microbial communities. Knockout mutants and physiological studies demonstrate that vitamin B12 uptake in both Chlamydomonas reinhardtii and the unrelated Phaeodactylum tricornutum requires cobalamin acquisition protein 1.
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1093/plphys/kiad564