Taxonomic and functional assembly cues enrich the endophytic tobacco microbiota across epiphytic compartments

The plant microbiome plays a critical role in plant growth, development, and health, with endophytes being recognized as essential members due to their close interactions with host plants. However, knowledge gaps remain in understanding the mechanisms driving the colonization and establishment of en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mSphere 2024-01, Vol.9 (1), p.e0060723-e0060723
Hauptverfasser: Yang, Luhua, Guo, Yuan, Yang, Hui, Li, Shun, Zhang, Yunzeng, Hao, Likai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The plant microbiome plays a critical role in plant growth, development, and health, with endophytes being recognized as essential members due to their close interactions with host plants. However, knowledge gaps remain in understanding the mechanisms driving the colonization and establishment of endophytic communities. To address this issue, we investigated the microbiota of tobacco roots and leaves, including both epiphytic and endophytic microorganisms. We found that Actinobacteria and Alphaproteobacteria were significantly enriched in the root endosphere. Additionally, we identified higher abundances of functional traits involved in antibiotic synthesis, plant cell wall degradation, iron metabolism, secretion systems, and nicotine degradation enzymes in the endosphere. We further studied metagenome-assembled genomes from the rhizosphere and root endosphere, revealing a greater diversity of secondary metabolites in bacteria within the root endosphere. Together, this study provides insights into the taxonomic and functional assembly cues that may contribute to shaping the endophytic plant microbiota.IMPORTANCEThe presence of diverse microorganisms within plant tissues under natural conditions is a well-established fact. However, due to the plant immune system's barrier and the unique microhabitat of the plant interior, it remains unclear what specific characteristics bacteria require to successfully colonize and thrive in the plant endosphere. Recognizing the significance of unraveling these functional features, our study focused on investigating the enriched traits in the endophytic microbiota compared to the epiphytes. Through our research, we have successfully identified the taxonomic and functional assembly cues that drive the enrichment of the endophytic microbiota across the epiphytic compartments. These findings shed new light on the intricate mechanisms of endophyte colonization, thereby deepening our understanding of plant-microbe interactions and paving the way for further advancements in microbiome manipulation.
ISSN:2379-5042
2379-5042
DOI:10.1128/msphere.00607-23