β‑Bracelets: Macrocyclic Cross‑β Epitope Mimics Based on a Tau Conformational Strain

The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer’s disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant β-strand modules with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-10, Vol.145 (42), p.23131-23142
Hauptverfasser: Rajewski, Benjamin H., Makwana, Kamlesh M., Angera, Isaac J., Geremia, Danielle K., Zepeda, Anna R., Hallinan, Grace I., Vidal, Ruben, Ghetti, Bernardino, Serrano, Arnaldo L., Del Valle, Juan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer’s disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant β-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of β-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-β module specific to the AD tau fold. Termed “β-bracelets”, these proteo­mimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel β-sheet structure. Backbone N-amination of a selected β-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish β-bracelets as a new class of cross-β epitope mimics and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.3c06830