Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties
In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF productio...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-01, Vol.16 (2), p.217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16020217 |