Enzymatic detoxification of HC-toxin, the host-selective cyclic peptide from Cochliobolus carbonum
Resistance to the fungal plant pathogen Cochliobolus carbonum race 1 and to its host-selective toxin, HC-toxin, is determined by Hm, a single dominant gene in the host plant maize, (Zea mays L). Radiolabeled HC-toxin of specific activity 70 milliCuries per millimole, prepared by feeding tritiated D,...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1991-11, Vol.97 (3), p.1080-1086 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resistance to the fungal plant pathogen Cochliobolus carbonum race 1 and to its host-selective toxin, HC-toxin, is determined by Hm, a single dominant gene in the host plant maize, (Zea mays L). Radiolabeled HC-toxin of specific activity 70 milliCuries per millimole, prepared by feeding tritiated D,L-alanine to the fungus, was used to study its fate in maize leaf tissues. HC-toxin was converted by resistant leaf segments to a single compound, identified by mass spectrometry and nuclear magnetic resonance as the 8-hydroxy derivative of HC-toxin formed by reduction of the 8-keto group of 2-amino-9,10-epoxy-8-oxodecanoic acid, one of the amino acids in HC-toxin. Reduction of HC-toxin occurred in cell-free preparations from etiolated (Hm/ hm) maize shoots, and the activity was sensitive to heat and proteolytic digestion, dependent on NADPH, and inhibited by p-hydroxymercuribenzoate and disulfiram. The enzyme (from the Hm/hm genotype) was partially purified by ammonium sulfate precipitation and diethylaminoethyl-ion exchange chromatography. By gel filtration chromatography, the enzyme had a molecular weight of 42,000. NADH was approximately 30% as effective as NADPH as a hydride donor, and flavin-containing cofactors had no effect on activity. When HC-toxin was introduced to maize leaf segments through the transpiration stream, leaf segments from both resistant and susceptible maize inactivated toxin equally well over a time-course of 9 hours. Although these data suggest no relationship between toxin metabolism and host selectivity, we discuss findings in apparent conflict with the current data and describe why the relationship between enzymatic reduction of HC-toxin and Hm remains unresolved |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.97.3.1080 |