Machine Learning Demonstrates Dominance of Physical Characteristics over Particle Composition in Coal Dust Toxicity

Mine dust has been linked to the development of pneumoconiotic diseases such as silicosis and coal workers’ pneumoconiosis. Currently, it is understood that the physicochemical and mineralogical characteristics drive the toxic nature of dust particles; however, it remains unclear which parameter(s)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-01, Vol.58 (3), p.1636-1647
Hauptverfasser: Kamanzi, Conchita, Becker, Megan, Von Holdt, Johanna, Hsu, Nai-Jen, Konečný, Petr, Broadhurst, Jennifer, Jacobs, Muazzam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mine dust has been linked to the development of pneumoconiotic diseases such as silicosis and coal workers’ pneumoconiosis. Currently, it is understood that the physicochemical and mineralogical characteristics drive the toxic nature of dust particles; however, it remains unclear which parameter(s) account for the differential toxicity of coal dust. This study aims to address this issue by demonstrating the use of the partial least squares regression (PLSR) machine learning approach to compare the influence of D50 sub 10 μm coal particle characteristics against markers of cellular damage. The resulting analysis of 72 particle characteristics against cytotoxicity and lipid peroxidation reflects the power of PLSR as a tool to elucidate complex particle-cell relationships. By comparing the relative influence of each characteristic within the model, the results reflect that physical characteristics such as shape and particle roughness may have a greater impact on cytotoxicity and lipid peroxidation than composition-based parameters. These results present the first multivariate assessment of a broad-spectrum data set of coal dust characteristics using latent structures to assess the relative influence of particle characteristics on cellular damage.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.3c08732