Study of glucose starvation in excised maize root tips

Excised maize (Zea mays) root tips were used to follow the effects of a prolonged glucose starvation. Respiration rate began to decrease immediately after excision, reaching 30 to 40% of its initial value after 20 hours, and then declined more slowly until death of the tissues, which occurred after...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1991-06, Vol.96 (2), p.619-626
Hauptverfasser: Brouquisse, R. (Institut National de la Recherche Agronomique, Villenave d'Ornon, France), James, F, Raymond, P, Pradet, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excised maize (Zea mays) root tips were used to follow the effects of a prolonged glucose starvation. Respiration rate began to decrease immediately after excision, reaching 30 to 40% of its initial value after 20 hours, and then declined more slowly until death of the tissues, which occurred after 200 hours of starvation. During the whole process, respiration could be uncoupled by 2,4-dinitrophenol and the energy charge remained high. These results suggest that in excised maize root tips, respiration rate is essentially limited by the rate of biosyntheses (ATP-utilizing processes) rather than mitochondrial number. During starvation the sugar content sharply decreased for the first 20 hours and reached zero at 120 hours. Following root excision, proteins and lipids were continuously degraded and were virtually the only substrates for respiration and biosyntheses after 20 hours of starvation. Over the first 90 hours of starvation, enzymic activities related to sugar metabolic pathways and the Krebs cycle decreased to 20% or less of their initial activity. Starvation was reversible only for the first 80 to 90 hours. Between 80 and 100 hours, there was a sharp fall in intracellular osmolarity and a 25% loss in the dry weight. The irreversibility may be due, as in senescence, to a change in membrane selective permeability
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.96.2.619