Hydrogen-Bonded Structures of Water Molecules in Hydroxy-Functionalized Nanochannels of Columnar Liquid Crystalline Nanostructured Membranes Studied by Soft X‑ray Emission Spectroscopy
Here, we report a synchrotron-based high-resolution soft X-ray emission spectroscopy study on hydrogen-bonded structures of water molecules in the self-organized, hydroxy-group-functionalized one-dimensional nanochannels of liquid crystalline nanostructured membranes. The water molecules confined in...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-01, Vol.15 (2), p.454-460 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we report a synchrotron-based high-resolution soft X-ray emission spectroscopy study on hydrogen-bonded structures of water molecules in the self-organized, hydroxy-group-functionalized one-dimensional nanochannels of liquid crystalline nanostructured membranes. The water molecules confined in the uncharged hydroxy-functionalized nanochannels (which have a diameter of about 1.5 nm) exhibit hydrogen-bonded structures close to those of bulk liquid water, even directly interacting with diol groups. These hydrogen-bonded structures contrast with the more distorted hydrogen bonding of water molecules confined in self-organized channels with a diameter of 0.6 nm formed by an analogous nanostructured membrane with a cationic moiety, which was explained by the ability of the channel functional groups to donate and accept hydrogen bonds in a confined space and the nanochannel diameter. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.3c03027 |