Sidedness of plant plasma membrane vesicles altered by conditions of preparation
Right-side-out vesicles of plasma membrane from soybean (Glycine max Merr.) were isolated by aqueous two-phase partition. Inside-out vesicles were formed when these preparations were diluted or frozen and thawed. Sidedness (orientation) was determined by preparative free-flow electrophoresis, concan...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1992-01, Vol.98 (1), p.183-190 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Right-side-out vesicles of plasma membrane from soybean (Glycine max Merr.) were isolated by aqueous two-phase partition. Inside-out vesicles were formed when these preparations were diluted or frozen and thawed. Sidedness (orientation) was determined by preparative free-flow electrophoresis, concanavalin A binding, and ATPase latency. Under usual conditions of aqueous two-phase partition, the bulk of the vesicles were strongly reactive with concanavalin A-peroxidase and showed a high level of structure-linked latency as expected of a right-side-out (cytoplasmic-side-in) orientation. The vesicles migrated as a single electrophoretic peak. When frozen and thawed, vesicle diameters were reduced and a second population of vesicles of increased electrophoretic mobility was obtained. This second population of vesicles was weakly reactive with concanavalin A-peroxidase and showed low latency as expected of an inside-out (cytoplasmic-side-out) orientation. If the plasma membrane vesicles were diluted with water, a mixture of right-side-out and inside-out vesicles again was obtained. However, some of the cytoplasmic-side-out vesicles that were concanavalin A-unreactive and had low ATPase latency migrated more slowly as a second, less electronegative peak, upon free-flow electrophoresis. The results suggest that right-side-out and inside-out plasma membrane vesicles differ in electrophoretic mobility but that both the orientation and the absolute electrophoretic mobility of the differently oriented vesicles may be influenced by the preparative conditions |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.98.1.183 |