RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding

Binding of peptides to major histocompatibility complex (MHC) molecules plays a crucial role in triggering T cell recognition mechanisms essential for immune response. Accurate prediction of MHC-peptide binding is vital for the development of cancer therapeutic vaccines. While recent deep learning-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-01, Vol.40 (1)
Hauptverfasser: Wang, Xuejiao, Wu, Tingfang, Jiang, Yelu, Chen, Taoning, Pan, Deng, Jin, Zhi, Xie, Jingxin, Quan, Lijun, Lyu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Binding of peptides to major histocompatibility complex (MHC) molecules plays a crucial role in triggering T cell recognition mechanisms essential for immune response. Accurate prediction of MHC-peptide binding is vital for the development of cancer therapeutic vaccines. While recent deep learning-based methods have achieved significant performance in predicting MHC-peptide binding affinity, most of them separately encode MHC molecules and peptides as inputs, potentially overlooking critical interaction information between the two. In this work, we propose RPEMHC, a new deep learning approach based on residue-residue pair encoding to predict the binding affinity between peptides and MHC, which encode an MHC molecule and a peptide as a residue-residue pair map. We evaluate the performance of RPEMHC on various MHC-II-related datasets for MHC-peptide binding prediction, demonstrating that RPEMHC achieves better or comparable performance against other state-of-the-art baselines. Moreover, we further construct experiments on MHC-I-related datasets, and experimental results demonstrate that our method can work on both two MHC classes. These extensive validations have manifested that RPEMHC is an effective tool for studying MHC-peptide interactions and can potentially facilitate the vaccine development. The source code of the method along with trained models is freely available at https://github.com/lennylv/RPEMHC.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad785