Metal Surface Engineering for Extreme Sustenance of Jumping Droplet Condensation
Water vapor condensation on metallic surfaces is critical to a broad range of applications, ranging from power generation to the chemical and pharmaceutical industries. Enhancing simultaneously the heat transfer efficiency, scalability, and durability of a condenser surface remains a persistent chal...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-01, Vol.40 (2), p.1257-1265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water vapor condensation on metallic surfaces is critical to a broad range of applications, ranging from power generation to the chemical and pharmaceutical industries. Enhancing simultaneously the heat transfer efficiency, scalability, and durability of a condenser surface remains a persistent challenge. Coalescence-induced condensing droplet jumping is a capillarity-driven mechanism of self-ejection of microscopic condensate droplets from a surface. This mechanism is highly desired due to the fact that it continuously frees up the surface for new condensate to form directly on the surface, enhancing heat transfer without requiring the presence of the gravitational field. However, this condensate ejection mechanism typically requires the fabrication of surface nanotextures coated by an ultrathin ( |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c02713 |