Both Nitro Groups Are Essential for High Antitubercular Activity of 3,5-Dinitrobenzylsulfanyl Tetrazoles and 1,3,4-Oxadiazoles through the Deazaflavin-Dependent Nitroreductase Activation Pathway

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2024-01, Vol.67 (1), p.81-109
Hauptverfasser: Karabanovich, Galina, Fabiánová, Viktória, Vocat, Anthony, Dušek, Jan, Valášková, Lenka, Stolaříková, Jiřina, Kitson, Russell R. A., Pávek, Petr, Vávrová, Kateřina, Djaout, Kamel, Mikušová, Katarína, Baulard, Alain R., Cole, Stewart T., Korduláková, Jana, Roh, Jaroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure–activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.
ISSN:0022-2623
1520-4804
1520-4804
DOI:10.1021/acs.jmedchem.3c00925