Hypomorphic human SEL1L and HRD1 variants uncouple multilayered ER-associated degradation machinery
The suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) complex of the endoplasmic reticulum-associated degradation (ERAD) machinery is a key cellular proteostasis pathway. Although previous studies have shown ERAD as promoting the development and maintenance of many cell types in...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2024-01, Vol.134 (2), p.1-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) complex of the endoplasmic reticulum-associated degradation (ERAD) machinery is a key cellular proteostasis pathway. Although previous studies have shown ERAD as promoting the development and maintenance of many cell types in mice, its importance to human physiology remained undetermined. In two articles in this issue of the JCI, Qi and colleagues describe four biallelic hypomorphic SEL1L and HRD1 variants that were associated with neurodevelopment disorders, locomotor dysfunction, impaired immunity, and premature death in patients. These pathogenic SEL1L-HRD1 variants shine a light on the critical importance of ERAD in humans and pave the way for future studies dissecting ERAD mechanisms in specific cell types. |
---|---|
ISSN: | 1558-8238 0021-9738 1558-8238 |
DOI: | 10.1172/JCI175448 |