Unveiling precision: a data-driven approach to enhance photoacoustic imaging with sparse data
This study presents the Fourier Decay Perception Generative Adversarial Network (FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging stemming from restricted sensor availability and biological tissue heterogeneity. By integrating diverse photoacoustic data,...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2024-01, Vol.15 (1), p.28-43 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents the Fourier Decay Perception Generative Adversarial Network (FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging stemming from restricted sensor availability and biological tissue heterogeneity. By integrating diverse photoacoustic data, FDP-GAN notably enhances image fidelity and reduces artifacts, particularly in scenarios of low sampling. Its demonstrated effectiveness highlights its potential for substantial contributions to clinical applications, marking a significant stride in addressing pertinent challenges within the realm of photoacoustic acquisition techniques. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.506334 |