Unveiling precision: a data-driven approach to enhance photoacoustic imaging with sparse data

This study presents the Fourier Decay Perception Generative Adversarial Network (FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging stemming from restricted sensor availability and biological tissue heterogeneity. By integrating diverse photoacoustic data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2024-01, Vol.15 (1), p.28-43
Hauptverfasser: Huang, Mengyuan, Liu, Wu, Sun, Guocheng, Shi, Chaojing, Liu, Xi, Han, Kaitai, Liu, Shitou, Wang, Zijun, Xie, Zhennian, Guo, Qianjin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the Fourier Decay Perception Generative Adversarial Network (FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging stemming from restricted sensor availability and biological tissue heterogeneity. By integrating diverse photoacoustic data, FDP-GAN notably enhances image fidelity and reduces artifacts, particularly in scenarios of low sampling. Its demonstrated effectiveness highlights its potential for substantial contributions to clinical applications, marking a significant stride in addressing pertinent challenges within the realm of photoacoustic acquisition techniques.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.506334