Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession

Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2024-12, Vol.108 (1), p.99-99, Article 99
Hauptverfasser: Chen, Meirong, Yang, Jiazhi, Xue, Chunquan, Tu, Tieyao, Su, Zhiyao, Feng, Hanhua, Shi, Miaomiao, Zeng, Gui, Zhang, Dianxiang, Qian, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina , Russula , and Lactarius , while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity–ecosystem functioning during forest succession. Key points • Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. • Phytopathogenic fungi is a key driver in shaping EMF community. • The effect of plant Shannon’s diversity on EMF communities changed during the forest aging process.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-023-12992-5