Study on Failure Energy per Unit Area of Concrete Specimens Based on Minimum Energy Dissipation Theory

In order to study the strength change of concrete specimens under different loading conditions, based on the principle of minimum energy dissipation, the damage energy per unit area of concrete was studied. By using finite element numerical simulation software for concrete specimens with different f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-12, Vol.17 (1), p.201
Hauptverfasser: Liang, Xinyu, Wu, Zengbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to study the strength change of concrete specimens under different loading conditions, based on the principle of minimum energy dissipation, the damage energy per unit area of concrete was studied. By using finite element numerical simulation software for concrete specimens with different failure modes of tension, pressure, bending and torsion, a double-broken line damage constitutive model is adopted. The failure forms of concrete specimens under different loading conditions, as well as the failure area and failure energy of each specimen during loading, are simulated and analyzed. The failure energy per unit area under different failure modes was quantitively calculated, the relationship between the failure area and failure energy consumption under different failure modes was analyzed. The results show that, under different failure modes, the failure area of concrete specimens is different, the energy consumed during failure is different, and the strength is different. However, no matter how the failure mode changes during the failure process, the failure energy W per unit area remains constant and fluctuates in the range of 2.0~6.0 mJ/cm , which is related to the physical properties of concrete itself.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17010201