Development of metasurface based hyperthermia lens applicator for heating of cancerous tissues
Numerous designs and methods have been examined to improve penetration depth (PD), but there is a need for research to explore the potential increase in PD through uniform heating, a compact applicator, and low input power. This paper presents metasurface based hyperthermia lens applicator with wate...
Gespeichert in:
Veröffentlicht in: | Biomedical engineering letters 2024-01, Vol.14 (1), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous designs and methods have been examined to improve penetration depth (PD), but there is a need for research to explore the potential increase in PD through uniform heating, a compact applicator, and low input power. This paper presents metasurface based hyperthermia lens applicator with water bolus for uniform heating of cancerous tissues. The proposed applicator consists of a stacked spiral antenna and a spiral-shaped frequency selective surface as a superstrate. The spiral antenna and superstrate are optimized on a low cost FR4 substrate having a size of 32 × 32 × 3.27mm
3
and 10 × 10 × 1.6mm
3
(size of the unit cell), respectively. The proposed applicator is simulated with heterogeneous phantom (skin, fat, and muscle layers) and with the Gustav voxel model with and without a water bolus layer. The number of unit cells in the superstrate is optimized to direct the maximum energy toward the tumor location. The performance study of the applicator is carried out in terms of specific absorption rate, PD, and effective field size. Further, thermal analysis is carried out with 1.9 W of input power at the antenna port, and the highest 44.7 °C temperature rise is obtained. The cancerous tissue’s (tumor) surrounding temperature is between 41 and 45 °C, which is adequate for efficient hyperthermia treatment. Finally, the proposed metasurface hyperthermia lens applicator is fabricated and experimentally validated in a mimicked phantom’s presence. |
---|---|
ISSN: | 2093-9868 2093-985X 2093-985X |
DOI: | 10.1007/s13534-023-00300-z |