CO2 assimilation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays

Conditions for optimal CO2 fixation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays were examined. The relative rates of these processes varied according to the photosynthetic carbon reduction cycle intermediate provided. Highest rates of malate decarboxylation, measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1985-09, Vol.79 (1), p.165-170
Hauptverfasser: Boag, S, Jenkins, C.L.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conditions for optimal CO2 fixation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays were examined. The relative rates of these processes varied according to the photosynthetic carbon reduction cycle intermediate provided. Highest rates of malate decarboxylation, measured as pyruvate formation, were seen in the presence of 3-phosphoglycerate, while carbon fixation was highest in the presence of dihydroxyacetone phosphate; only low rates were measured with added ribose-5-phosphate. Chloroplasts exhibited a distinct phosphate requirement and this was optimal at a level of 2 millimolar inorganic phosphate in the presence of 2.5 millimolar 3-phosphoglycerate, dihydroxyacetone phosphate, or ribose-5-phosphate. Malate decarboxylation and CO2 fixation were stimulated by additions of AMP, ADP, or ATP with half-maximal stimulation occurring at external adenylate concentrations of about 0.15 millimolar. High concentrations (>1 millimolar) of AMP were inhibitory. Aspartate included in the incubation medium stimulated malate decarboxylation and CO2 assimilation. In the presence of aspartate, the apparent Michaelis constant (malate) for malate decarboxylation to pyruvate by chloroplasts decreased from 6 to 0.67 millimolar while the calculated Vmax for this process increased from 1.3 to 3.3 micromoles per milligram chlorophyll. Aspartate itself was not metabolized. It was concluded that the processes mediating the transport of phosphate, 3-phosphoglycerate, and dihydroxyacetone phosphate transport on the one hand, and also of malate might differ from those previously described for chloroplasts from C3 plants.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.79.1.165