Synthesis and Evaluation of Small Molecule Inhibitors of the Androgen Receptor N‑Terminal Domain

The androgen receptor (AR) is central to prostate cancer pathogenesis and has been extensively validated as a drug target. However, small-molecule anti-androgen therapies remain limited due to resistance and will eventually fail to suppress tumor growth, resulting in progression to castration-resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS medicinal chemistry letters 2023-12, Vol.14 (12), p.1800-1806
Hauptverfasser: Henry, Martyn C., Riley, Christopher M., Hunter, Irene, Elwood, Jessica M. L., Lopez-Fernandez, J. Daniel, Minty, Laura, Coe, Diane M., McEwan, Iain J., Jamieson, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The androgen receptor (AR) is central to prostate cancer pathogenesis and has been extensively validated as a drug target. However, small-molecule anti-androgen therapies remain limited due to resistance and will eventually fail to suppress tumor growth, resulting in progression to castration-resistant prostate cancer (CRPC). The intrinsically disordered N-terminal domain (NTD) is crucial for AR transactivation and has been investigated as a suitable target in the presence of ligand binding domain mutations. A screening campaign identified biaryl isoxazole compound 7 as a weak inhibitor of the AR NTD. A library of biaryl analogues were synthesized, and their biological activities were assessed in a VCaP cell-based luciferase reporter gene assay. A structure–activity relationship (SAR) study revealed that indazole analogue 16 exhibited increased potency and favorable physicochemical properties with a benchmarked pharmacokinetic profile, providing a suitable starting point for further optimization of 16 as a CRPC therapeutic in the presence of AR mutations.
ISSN:1948-5875
1948-5875
DOI:10.1021/acsmedchemlett.3c00426