Exosome Precipitation by Ionic Strength Modulation: ExoPRISM

Extracellular vesicles (EVs) are emerging as crucial materials for precision theragnostic applications. However, current separation methods are time-consuming, costly, and not scalable and deliver limited yields or purity. Here, we present EV precipitation by ionic strength modulation (ExoPRISM), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-11, Vol.15 (49), p.56807-56819
Hauptverfasser: Sunkara, Vijaya, Park, Juhee, Han, Jiyun, del Río, Jonathan Sabaté, Cho, Hyun-Ju, Oh, In-Jae, Cho, Yoon-Kyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extracellular vesicles (EVs) are emerging as crucial materials for precision theragnostic applications. However, current separation methods are time-consuming, costly, and not scalable and deliver limited yields or purity. Here, we present EV precipitation by ionic strength modulation (ExoPRISM), a simple, low-cost, user-friendly, and readily adaptable approach for separating EVs in high yields without compromising their biological functions. Adding an electrolyte solution to blood plasma in small increments generates the sequential precipitation of proteins and EVs, allowing for fractional separation of EVs using low-speed centrifugation. The coprecipitated electrolytes are easily washed away, and the entire EV separation and washing process takes less than an hour. This approach successfully separates EVs from a broad range of volumes and types of biological fluids, including culture medium, urine, plasma, and serum, showing promise as a robust tool for next-generation liquid biopsies and regenerative medicine.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c13527