Modeling Synaptic Integration of Bursty and β Oscillatory Inputs in Ventromedial Motor Thalamic Neurons in Normal and Parkinsonian States
The ventromedial motor thalamus (VM) is implicated in multiple motor functions and occupies a central position in the cortico-basal ganglia-thalamocortical loop. It integrates glutamatergic inputs from motor cortex (MC) and motor-related subcortical areas, and it is a major recipient of inhibition f...
Gespeichert in:
Veröffentlicht in: | eNeuro 2023-12, Vol.10 (12), p.ENEURO.0237-23.2023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ventromedial motor thalamus (VM) is implicated in multiple motor functions and occupies a central position in the cortico-basal ganglia-thalamocortical loop. It integrates glutamatergic inputs from motor cortex (MC) and motor-related subcortical areas, and it is a major recipient of inhibition from basal ganglia. Previous
experiments performed in mice showed that dopamine depletion enhances the excitability of thalamocortical (TC) neurons in VM due to reduced M-type potassium currents. To understand how these excitability changes impact synaptic integration
, we constructed biophysically detailed mouse VM TC model neurons fit to normal and dopamine-depleted conditions, using the NEURON simulator. These models allowed us to assess the influence of excitability changes with dopamine depletion on the integration of synaptic inputs expected
We found that VM neuron models in the dopamine-depleted state showed increased firing rates with the same synaptic inputs. Synchronous bursting in inhibitory input from the substantia nigra pars reticulata (SNR), as observed in parkinsonian conditions, evoked a postinhibitory firing rate increase with a longer duration in dopamine-depleted than control conditions, due to different M-type potassium channel densities. With β oscillations in the inhibitory inputs from SNR and the excitatory inputs from cortex, we observed spike-phase locking in the activity of the models in normal and dopamine-depleted states, which relayed and amplified the oscillations of the inputs, suggesting that the increased β oscillations observed in VM of parkinsonian animals are predominantly a consequence of changes in the presynaptic activity rather than changes in intrinsic properties. |
---|---|
ISSN: | 2373-2822 2373-2822 |
DOI: | 10.1523/ENEURO.0237-23.2023 |