Role of intelligent/interactive qualitative and quantitative analysis-three-dimensional estimated model in donor-recipient size mismatch following deceased donor liver transplantation

Donor-recipient size mismatch (DRSM) is considered a crucial factor for poor outcomes in liver transplantation (LT) because of complications, such as massive intraoperative blood loss (IBL) and early allograft dysfunction (EAD). Liver volumetry is performed routinely in living donor LT, but rarely i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of gastroenterology : WJG 2023-11, Vol.29 (44), p.5894-5906
Hauptverfasser: Ding, Han, Ding, Zhi-Guo, Xiao, Wen-Jing, Mao, Xu-Nan, Wang, Qi, Zhang, Yi-Chi, Cai, Hao, Gong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Donor-recipient size mismatch (DRSM) is considered a crucial factor for poor outcomes in liver transplantation (LT) because of complications, such as massive intraoperative blood loss (IBL) and early allograft dysfunction (EAD). Liver volumetry is performed routinely in living donor LT, but rarely in deceased donor LT (DDLT), which amplifies the adverse effects of DRSM in DDLT. Due to the various shortcomings of traditional manual liver volumetry and formula methods, a feasible model based on intelligent/interactive qualitative and quantitative analysis-three-dimensional (IQQA-3D) for estimating the degree of DRSM is needed. To identify benefits of IQQA-3D liver volumetry in DDLT and establish an estimation model to guide perioperative management. We retrospectively determined the accuracy of IQQA-3D liver volumetry for standard total liver volume (TLV) (sTLV) and established an estimation TLV (eTLV) index (eTLVi) model. Receiver operating characteristic (ROC) curves were drawn to detect the optimal cut-off values for predicting massive IBL and EAD in DDLT using donor sTLV to recipient sTLV (called sTLVi). The factors influencing the occurrence of massive IBL and EAD were explored through logistic regression analysis. Finally, the eTLVi model was compared with the sTLVi model through the ROC curve for verification. A total of 133 patients were included in the analysis. The Changzheng formula was accurate for calculating donor sTLV ( = 0.083) but not for recipient sTLV ( = 0.036). Recipient eTLV calculated using IQQA-3D highly matched with recipient sTLV ( = 0.221). Alcoholic liver disease, gastrointestinal bleeding, and sTLVi > 1.24 were independent risk factors for massive IBL, and drug-induced liver failure was an independent protective factor for massive IBL. Male donor-female recipient combination, model for end-stage liver disease score, sTLVi ≤ 0.85, and sTLVi ≥ 1.32 were independent risk factors for EAD, and viral hepatitis was an independent protective factor for EAD. The overall survival of patients in the 0.85 < sTLVi < 1.32 group was better compared to the sTLVi ≤ 0.85 group and sTLVi ≥ 1.32 group ( < 0.001). There was no statistically significant difference in the area under the curve of the sTLVi model and IQQA-3D eTLVi model in the detection of massive IBL and EAD (all > 0.05). IQQA-3D eTLVi model has high accuracy in predicting massive IBL and EAD in DDLT. We should follow the guidance of the IQQA-3D eTLVi model in perioperative management.
ISSN:1007-9327
2219-2840
DOI:10.3748/wjg.v29.i44.5894