Modulating the RAGE-Induced Inflammatory Response: Peptoids as RAGE Antagonists

While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-β (Aβ) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2023-11, Vol.24 (22), p.e202300503-e202300503
Hauptverfasser: Waugh, Mihyun Lim, Wolf, Lauren M, Turner, James P, Phillips, Lauren N, Servoss, Shannon L, Moss, Melissa A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-β (Aβ) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation end-products (RAGE), a key receptor of innate immune response, is reported in AD. In parallel, RAGE ligands, including Aβ aggregates, HMGB1, and S100B, are elevated in AD brain. Activation of RAGE by these ligands triggers release of inflammatory cytokines and upregulates cell surface RAGE. Despite such observation, there are currently no therapeutics that target RAGE for treatment of AD-associated neuroinflammation. Peptoids, a novel class of potential AD therapeutics, display low toxicity, facile blood-brain barrier permeability, and resistance to proteolytic degradation. In the current study, peptoids were designed to mimic Aβ, a ligand that binds the V-domain of RAGE, and curtail RAGE inflammatory activation. We reveal the nanomolar binding capability of peptoids JPT1 and JPT1a to RAGE and demonstrate their ability to attenuate lipopolysaccharide-induced pro-inflammatory cytokine production as well as upregulation of RAGE cell surface expression. These results support RAGE antagonist peptoid-based mimics as a prospective therapeutic strategy to counter neuroinflammation in AD and other neurodegenerative diseases.
ISSN:1439-4227
1439-7633
1439-7633
DOI:10.1002/cbic.202300503