Rapid in situ RNA imaging based on Cas12a thrusting strand displacement reaction
Abstract RNA In situ imaging through DNA self-assembly is advantaged in illustrating its structures and functions with high-resolution, while the limited reaction efficiency and time-consuming operation hinder its clinical application. Here, we first proposed a new strand displacement reaction (SDR)...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-12, Vol.51 (22), p.e111-e111 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
RNA In situ imaging through DNA self-assembly is advantaged in illustrating its structures and functions with high-resolution, while the limited reaction efficiency and time-consuming operation hinder its clinical application. Here, we first proposed a new strand displacement reaction (SDR) model (Cas12a thrusting SDR, CtSDR), in which Cas12a could overcome the inherent reaction limitation and dramatically enhance efficiency through energy replenishment and by-product consumption. The target-initiated CtSDR amplification was established for RNA analysis, with order of magnitude lower limit of detection (LOD) than the Cas13a system. The CtSDR-based RNA in situ imaging strategy was developed to monitor intra-cellular microRNA expression change and delineate the landscape of oncogenic RNA in 66 clinic tissue samples, possessing a clear advantage over classic in situ hybridization (ISH) in terms of operation time (1 h versus 14 h) while showing comparable sensitivity and specificity. This work presents a promising approach to developing advanced molecular diagnostic tools.
Graphical Abstract
Graphical Abstract |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkad953 |