Small Mitochondria-Targeting Fluorophore with Multifunctional Therapeutic Activities against Prostate Cancer via the HIF1α/OATPs Pathway

Prostate cancer (PCa) is considered to be the most prevalent malignancy in males worldwide. Abiraterone is a 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor that has been approved for use in patients with prostate cancer. However, several negative aspects, such as drug resistance, toxicity, and lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2023-12, Vol.20 (12), p.6226-6236
Hauptverfasser: Qin, Jing, Zhang, Caiqin, Zhao, Yong, Tan, Dengxu, Wu, Pengpeng, Shui, Xue, Qin, Weijun, Ge, Xu, Shi, Changhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostate cancer (PCa) is considered to be the most prevalent malignancy in males worldwide. Abiraterone is a 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor that has been approved for use in patients with prostate cancer. However, several negative aspects, such as drug resistance, toxicity, and lack of real-time monitoring of treatment responses, could appear with long-term use. Therefore, the development of anticancer agents with specific targeting to avoid side effects is imperative. Here, we used MHI-148, a type of heptamethine cyanine (HC) near-infrared fluorescence dye (NIRF), as a prototype structure to synthesize two theranostic agents, Abi-DZ-1 and Abi-783. The new compound Abi-DZ-1 retained the excellent photophysical characteristics and NIRF imaging property of MHI-148, and it could preferentially accumulate in prostate cancer cells but not in normal prostate epithelial cells via the HIF1α/organic anion-transporting polypeptides axis. NIRF imaging using Abi-DZ-1 selectively identified tumors in mice bearing PCa xenografts. Moreover, Abi-DZ-1 treatment significantly retarded the tumor growth in both a cell-derived xenograft model and a patient-derived tumor xenograft model. This finding demonstrated that Abi-DZ-1 may hold promise as a potential multifunctional theranostic agent for future tumor-targeted imaging and precision therapy. Constructing theranostic agents using the NIRF dye platform holds great promise in accurate therapy and intraoperative navigation.
ISSN:1543-8384
1543-8392
1543-8392
DOI:10.1021/acs.molpharmaceut.3c00621