miR-218 Promotes Dopaminergic Differentiation and Controls Neuron Excitability and Neurotransmitter Release through the Regulation of a Synaptic-Related Genes Network

In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2023-11, Vol.43 (48), p.8104-8125
Hauptverfasser: Pulcrano, Salvatore, De Gregorio, Roberto, De Sanctis, Claudia, Volpicelli, Floriana, Piscitelli, Rosa Maria, Speranza, Luisa, Perrone-Capano, Carla, di Porzio, Umberto, Caiazzo, Massimiliano, Martini, Alessandro, Giacomet, Cecilia, Medina, Diego, Awatramani, Rajeshwar, Viggiano, Davide, Federici, Mauro, Mercuri, Nicola B, Guatteo, Ezia, Bellenchi, Gian Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission. In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0431-23.2023