Comparison of Taiwanese and European Calibration Factors for Heart-to-Mediastinum Ratio in Multicenter 123I-mIBG Phantom Studies

Background: Cross-calibration of 123I-labeled meta-iodobenzylguanidine (mIBG) myocardial-derived indices is essential to extrapolate findings from several clinical centers. Here, we conducted a phantom study to generate conversion coefficients for the calibration of heart-to-mediastinum ratios and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of Nuclear Cardiology 2023, Vol.9(1), pp.54-60
Hauptverfasser: Okuda, Koichi, Nakajima, Kenichi, Hung, Guang-Uei, Wu, Hao-Ting, Verschure, Derk O., Verberne, Hein J., Kitamura, Chiemi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Cross-calibration of 123I-labeled meta-iodobenzylguanidine (mIBG) myocardial-derived indices is essential to extrapolate findings from several clinical centers. Here, we conducted a phantom study to generate conversion coefficients for the calibration of heart-to-mediastinum ratios and compare them between Taiwan and Europe. Methods: We used an acrylic phantom dedicated to 123I-mIBG planar imaging to calculate the conversion coefficients of 136 phantom images derived from 36 Taiwanese institutions. A European phantom image database including 191 images from 27 institutions was used. Conversion coefficients were categorized into five collimator types: low-energy (LE) high-resolution (LEHR), LE general-purpose (LEGP), extended LEGP (ELEGP), medium-energy (ME) GP (MEGP), and ME low-penetration (MELP) collimators. Results: The conversion coefficients were 0.53 ± 0.039, 0.59 ± 0.032, 0.79 ± 0.032, 0.96 ± 0.038, and 0.99 ± 0.050 for LEHR, LEGP, ELEGP, MEGP, and MELP collimators, respectively. The Taiwanese and European conversion coefficients for the LEHR, LEGP, and MELP collimators did not significantly differ. The coefficient of variation was slightly higher for the Taiwanese than the European conversion coefficients (3.7%–7.5% vs. 2.3%–5.6%). Conclusions: We calculated conversion coefficients for various types of collimators used in Taiwan using a 123I-mIBG phantom. In general, the Taiwanese and European conversion coefficients were comparable. These findings further corroborated and highlighted the need for 123I-mIBG standardization using the phantom-determined conversion coefficients.
ISSN:2189-3926
2424-1741
2424-1741
DOI:10.17996/anc.23-00006