Differential regulation of multiple flagellins in Vibrio cholerae
Vibrio cholerae, the causative agent of the human diarrheal disease cholera, is a motile bacterium with a single polar flagellum. Motility has been implicated as a virulence determinant in some animal models of cholera, but the relationship between motility and virulence has not yet been clearly def...
Gespeichert in:
Veröffentlicht in: | Journal of bacteriology 1998-01, Vol.180 (2), p.303-316 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vibrio cholerae, the causative agent of the human diarrheal disease cholera, is a motile bacterium with a single polar flagellum. Motility has been implicated as a virulence determinant in some animal models of cholera, but the relationship between motility and virulence has not yet been clearly defined. We have begun to define the regulatory circuitry controlling motility. We have identified five V. cholerae flagellin genes, arranged in two chromosomal loci, flaAC and flaEDB; all five genes have their own promoters. The predicted gene products have a high degree of homology to each other. A strain containing a single mutation in flaA is nonmotile and lacks a flagellum, while strains containing multiple mutations in the other four flagellin genes, including a flaCEDB strain, remain motile. Measurement of fla promoter-lacZ fusions reveals that all five flagellin promoters are transcribed at high levels in both wild-type and flaA strains. Measurement of the flagellin promoter-lacZ fusions in Salmonella typhimurium indicates that the promoter for flaA is transcribed by the sigma54 holoenzyme form of RNA polymerase while the flaE, flaD, and flaB promoters are transcribed by the sigma28 holoenzyme. These results reveal that the V. cholerae flagellum is a complex structure with multiple flagellin subunits including FlaA, which is essential for flagellar synthesis and is differentially regulated from the other flagellins. |
---|---|
ISSN: | 0021-9193 1098-5530 |
DOI: | 10.1128/JB.180.2.303-316.1998 |