Ferroelectric Domain Wall p–n Junctions

We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-11, Vol.23 (22), p.10360-10366
Hauptverfasser: Maguire, Jesi R., McCluskey, Conor J., Holsgrove, Kristina M., Suna, Ahmet, Kumar, Amit, McQuaid, Raymond G. P., Gregg, J. Marty
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10366
container_issue 22
container_start_page 10360
container_title Nano letters
container_volume 23
creator Maguire, Jesi R.
McCluskey, Conor J.
Holsgrove, Kristina M.
Suna, Ahmet
Kumar, Amit
McQuaid, Raymond G. P.
Gregg, J. Marty
description We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.
doi_str_mv 10.1021/acs.nanolett.3c02966
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10683062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889244888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-35a7802509c80dd67cae1f93a924679735356206ae2737fd537d1cd3d9cf9fbb3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EoqXwByyyhEXK2E78WCFUKA9VYgNiabmOA0GOXewEiR3_wB_yJQS1VGI1V5qrM6OD0DGGKQaCz7RJU699cLbrptQAkYztoDEuKeRMSrK7zaIYoYOUXgFA0hL20YhyWXAqYIxO5zbGYJ01XWxMdhla3fjsSTuXrb4_v3x213vTNcGnQ7RXa5fs0WZO0OP86mF2ky_ur29nF4vcUMG6nJaaCyAlSCOgqhg32uJaUi1JwbjktKQlI8C0JZzyuiopr7CpaCVNLevlkk7Q-Zq76petrYz1XdROrWLT6vihgm7U_41vXtRzeFcYmKDAyEA42RBieOtt6lTbJGOd096GPikixPBMIYQYqsW6amJIKdp6eweD-tWsBs3qT7PaaKY_fVFzmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889244888</pqid></control><display><type>article</type><title>Ferroelectric Domain Wall p–n Junctions</title><source>ACS Publications</source><creator>Maguire, Jesi R. ; McCluskey, Conor J. ; Holsgrove, Kristina M. ; Suna, Ahmet ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</creator><creatorcontrib>Maguire, Jesi R. ; McCluskey, Conor J. ; Holsgrove, Kristina M. ; Suna, Ahmet ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</creatorcontrib><description>We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c02966</identifier><identifier>PMID: 37947380</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Letter</subject><ispartof>Nano letters, 2023-11, Vol.23 (22), p.10360-10366</ispartof><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-35a7802509c80dd67cae1f93a924679735356206ae2737fd537d1cd3d9cf9fbb3</citedby><cites>FETCH-LOGICAL-c386t-35a7802509c80dd67cae1f93a924679735356206ae2737fd537d1cd3d9cf9fbb3</cites><orcidid>0000-0002-6573-2224 ; 0000-0002-1194-5531 ; 0000-0001-8141-8617 ; 0000-0001-5969-6194 ; 0000-0001-8857-5105 ; 0000-0002-6451-7768 ; 0000-0003-2362-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2763,27922,27923</link.rule.ids></links><search><creatorcontrib>Maguire, Jesi R.</creatorcontrib><creatorcontrib>McCluskey, Conor J.</creatorcontrib><creatorcontrib>Holsgrove, Kristina M.</creatorcontrib><creatorcontrib>Suna, Ahmet</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>McQuaid, Raymond G. P.</creatorcontrib><creatorcontrib>Gregg, J. Marty</creatorcontrib><title>Ferroelectric Domain Wall p–n Junctions</title><title>Nano letters</title><description>We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.</description><subject>Letter</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EoqXwByyyhEXK2E78WCFUKA9VYgNiabmOA0GOXewEiR3_wB_yJQS1VGI1V5qrM6OD0DGGKQaCz7RJU699cLbrptQAkYztoDEuKeRMSrK7zaIYoYOUXgFA0hL20YhyWXAqYIxO5zbGYJ01XWxMdhla3fjsSTuXrb4_v3x213vTNcGnQ7RXa5fs0WZO0OP86mF2ky_ur29nF4vcUMG6nJaaCyAlSCOgqhg32uJaUi1JwbjktKQlI8C0JZzyuiopr7CpaCVNLevlkk7Q-Zq76petrYz1XdROrWLT6vihgm7U_41vXtRzeFcYmKDAyEA42RBieOtt6lTbJGOd096GPikixPBMIYQYqsW6amJIKdp6eweD-tWsBs3qT7PaaKY_fVFzmw</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Maguire, Jesi R.</creator><creator>McCluskey, Conor J.</creator><creator>Holsgrove, Kristina M.</creator><creator>Suna, Ahmet</creator><creator>Kumar, Amit</creator><creator>McQuaid, Raymond G. P.</creator><creator>Gregg, J. Marty</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6573-2224</orcidid><orcidid>https://orcid.org/0000-0002-1194-5531</orcidid><orcidid>https://orcid.org/0000-0001-8141-8617</orcidid><orcidid>https://orcid.org/0000-0001-5969-6194</orcidid><orcidid>https://orcid.org/0000-0001-8857-5105</orcidid><orcidid>https://orcid.org/0000-0002-6451-7768</orcidid><orcidid>https://orcid.org/0000-0003-2362-8717</orcidid></search><sort><creationdate>20231122</creationdate><title>Ferroelectric Domain Wall p–n Junctions</title><author>Maguire, Jesi R. ; McCluskey, Conor J. ; Holsgrove, Kristina M. ; Suna, Ahmet ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-35a7802509c80dd67cae1f93a924679735356206ae2737fd537d1cd3d9cf9fbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maguire, Jesi R.</creatorcontrib><creatorcontrib>McCluskey, Conor J.</creatorcontrib><creatorcontrib>Holsgrove, Kristina M.</creatorcontrib><creatorcontrib>Suna, Ahmet</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>McQuaid, Raymond G. P.</creatorcontrib><creatorcontrib>Gregg, J. Marty</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maguire, Jesi R.</au><au>McCluskey, Conor J.</au><au>Holsgrove, Kristina M.</au><au>Suna, Ahmet</au><au>Kumar, Amit</au><au>McQuaid, Raymond G. P.</au><au>Gregg, J. Marty</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric Domain Wall p–n Junctions</atitle><jtitle>Nano letters</jtitle><date>2023-11-22</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>10360</spage><epage>10366</epage><pages>10360-10366</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We have used high-voltage Kelvin probe force microscopy to map the spatial distribution of electrical potential, dropped along curved current-carrying conducting domain walls, in x-cut single-crystal ferroelectric lithium niobate thin films. We find that in-operando potential profiles and extracted electric fields, associated with p-n junctions contained within the walls, can be fully rationalized through expected variations in wall resistivity alone. There is no need to invoke additional physics (carrier depletion zones and space-charge fields) normally associated with extrinsically doped semiconductor p-n junctions. Indeed, we argue that this should not even be expected, as inherent Fermi level differences between p and n regions, at the core of conventional p-n junction behavior, cannot occur in domain walls that are surrounded by a common matrix. This is important for domain-wall nanoelectronics, as such in-wall junctions will neither act as diodes nor facilitate transistors in the same way as extrinsic semiconducting systems do.</abstract><pub>American Chemical Society</pub><pmid>37947380</pmid><doi>10.1021/acs.nanolett.3c02966</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6573-2224</orcidid><orcidid>https://orcid.org/0000-0002-1194-5531</orcidid><orcidid>https://orcid.org/0000-0001-8141-8617</orcidid><orcidid>https://orcid.org/0000-0001-5969-6194</orcidid><orcidid>https://orcid.org/0000-0001-8857-5105</orcidid><orcidid>https://orcid.org/0000-0002-6451-7768</orcidid><orcidid>https://orcid.org/0000-0003-2362-8717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-11, Vol.23 (22), p.10360-10366
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10683062
source ACS Publications
subjects Letter
title Ferroelectric Domain Wall p–n Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20Domain%20Wall%20p%E2%80%93n%20Junctions&rft.jtitle=Nano%20letters&rft.au=Maguire,%20Jesi%20R.&rft.date=2023-11-22&rft.volume=23&rft.issue=22&rft.spage=10360&rft.epage=10366&rft.pages=10360-10366&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c02966&rft_dat=%3Cproquest_pubme%3E2889244888%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889244888&rft_id=info:pmid/37947380&rfr_iscdi=true