Direct injection of Amblyomma americanum ticks with Cytauxzoon felis

Cytauxzoon felis is a tick-borne hemoprotozoan parasite that causes life-threatening disease in domestic cats in the United States. Currently, the platforms for C. felis research are limited to natural or experimental infection of domestic cats. This study aims to develop an alternative model by inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ticks and tick-borne diseases 2022-01, Vol.13 (1), p.101847-101847, Article 101847
Hauptverfasser: Yang, Tzushan S., Reichard, Mason V., Marr, Henry S., Cohn, Leah A., Nafe, Laura, Whitehurst, Nathan, Birkenheuer, Adam J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytauxzoon felis is a tick-borne hemoprotozoan parasite that causes life-threatening disease in domestic cats in the United States. Currently, the platforms for C. felis research are limited to natural or experimental infection of domestic cats. This study aims to develop an alternative model by infecting Amblyomma americanum ticks with C. felis via direct injection. Amblyomma americanum adults were injected with C. felis-infected feline erythrocytes through two routes: directly into the digestive tract through the anal pore (IA injection), or percutaneously into the tick hemocoel (IH injection). RNAscope® in situ hybridization (ISH) was used to visualize the parasites within the ticks at different time points after injection. Four months after injection, ticks were divided into 3 infestation groups based on injection methods and inoculum type and fed on 3 naïve cats to assess the ticks’ ability to transmit C. felis. Prior to the transmission challenge, selected ticks from each infestation group were tested for C. felis RNA via reverse transcription-PCR (RT-PCR). In both IA- and IH-injected ticks, ISH signals were observed in ticks up to 3 weeks after injection. The number of hybridization signals notably decreased over time, and no signals were detected by 4 months after injection. Prior to the transmission challenge, 37–57% of the sampled ticks were positive for C. felis RNA via RT-PCR. While the majority of injected ticks successfully attached and fed to repletion on all 3 cats during the transmission challenge, none of the cats became infected with C. felis. These results suggest that injected C. felis remained alive in ticks but was unable to progress to infective sporozoites after injection. It is unclear why this infection technique had been successful for other closely related tick-borne hemoprotozoa and not for C. felis. This outcome may be associated with uncharacterized differences in the C. felis life cycle, the lack of the feeding or molting in our model or absence of gametocytes in the inoculum. Nonetheless, our study demonstrated the potential of using ticks as an alternative model to study C. felis. Future improvement of a tick model for C. felis should consider other tick species for the injection model or utilize infection methods that more closely emulate the natural infection process.
ISSN:1877-959X
1877-9603
DOI:10.1016/j.ttbdis.2021.101847