NADP-Malate Dehydrogenase from Unicellular Green Alga Chlamydomonas reinhardtii. A First Step toward Redox Regulation?
The determinants of the thioredoxin (TRX)-dependent redox regulation of the chloroplastic NADP-malate dehydrogenase (NADP-MDH) from the eukaryotic green alga Chlamydomonas reinhardtii have been investigated using site-directed mutagenesis. The results indicate that a single C-terminal disulfide is r...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2005-02, Vol.137 (2), p.514-521 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The determinants of the thioredoxin (TRX)-dependent redox regulation of the chloroplastic NADP-malate dehydrogenase (NADP-MDH) from the eukaryotic green alga Chlamydomonas reinhardtii have been investigated using site-directed mutagenesis. The results indicate that a single C-terminal disulfide is responsible for this regulation. The redox midpoint potential of this disulfide is less negative than that of the higher plant enzyme. The regulation is of an all-or-nothing type, lacking the fine-tuning provided by the second N-terminal disulfide found only in NADP-MDH from higher plants. The decreased stability of specific cysteine/alanine mutants is consistent with the presence of a structural disulfide formed by two cysteine residues that are not involved in regulation of activity. Measurements of the ability of C. reinhardtii thioredoxin f (TRX f) to activate wild-type and site-directed mutants of sorghum (Sorghum vulgare) NADP-MDH suggest that the algal TRX f has a redox midpoint potential that is less negative than most those of higher plant TRXs f. These results are discussed from an evolutionary point of view. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.104.052670 |