Partial purification and properties of phleinase induced in stem base of orchardgrass after defoliation

Phleinase induced in stem base of orchardgrass (Dactylis glomerata L.) after defoliation was partially purified with ammonium sulfate precipitation, DEAE-Sephadex chromatography, gel filtration, and preparative polyacrylamide gel electrophoresis. The molecular weight of phleinase was 57,000 as deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1985-07, Vol.78 (3), p.591-595
Hauptverfasser: Yamamaoto, S, Mino, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phleinase induced in stem base of orchardgrass (Dactylis glomerata L.) after defoliation was partially purified with ammonium sulfate precipitation, DEAE-Sephadex chromatography, gel filtration, and preparative polyacrylamide gel electrophoresis. The molecular weight of phleinase was 57,000 as determined by gel chromatography. The enzyme showed normal Michaelis-Menten kinetics and its Km value was 91 millimolar for phlein of mean degree of polymerization 60 as substrate. Reaction velocity of the enzyme was proportional to molarity of phlein irrespective of its chain length (mean degree of polymerization, 30 to 314). Phleinase attacked terminal fructosyl linkage of phlein by multi-chain mechanism. Phleinase cleaved β-2,6 linkage, β-2,6 linkage branched with β-2,1 linkage, and β-2,1 linkage of fructan in order of affinity, but not sucrose. Phleinase exhibited an optimum activity at pH 5.5 at 40°C. Its complete inactivation occurred at 60 and 70°C without and with phlein, respectively. Heat inactivation of the enzyme was enhanced by p-chloromercuribenzoate and protected partially by L-cysteine. The enzyme was inhibited by sulfhydryl reagents such as p-chloromercuribenzoate and Hg2+. The modes of action of phleinase were compared with those of the related enzymes.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.78.3.591